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Table 10-15
G- 2 20 -10 0 0
BASIC Cs Xp X, X, X3 X Gy
VARIABLES H
X2 20 0 0 1 0 0 | 1
x 2 10/3 1 0 2/3 0 ' -10/3
x4 0 25/3 0 0 8/3 1 C—40/3
2=20/3 0 0 34/3 0 1 40/3 « A

Again, since the solution is non-integer one, insert one more fractional cut. From the third row of Table

1015,
25/3=8/3x3+x,—-40/3 g;

or B+1/3)=2+2/3)x3+ (1 +0) x, + (- 14 +2/3) g,
The corresponding fractional cut will be — 1/3 = 0x; + 0x; —2/3 x3 +0x4 — 2/3g1+82
Inserting this constraint in Table 10-15 , the following modified table is obtained.

Table 10-16
¢ 2 20 -10 0 0 0
BASIC Cp Xp X, X, X, Xs ' G G2
VAR. '
x 20 0 0 1 0 0 | 1 0
x 2 10/3 1 0 2/3 0 i -1073 0
_____ s |0 s |00 %8 .oz 0
g 0 - -1/3 0 0 [-2/3] ° L - 3 1
2=20/3 0 0 34/3 0 Tz 04
T ! {
Second Iteration. Using dual simplex method remove G, and introduce Xj .
Table 1017
¢ 2 20 -10 0 0 0
BASIC Cp X Xy X, X3 X4 E Gy G2
VAR. :
X3 20 0 0 1 0 0 i 1 0
xi 2 3 1 0 0 0 i -4 1
xq 0 7 0 0 0 1 L -6 4
x3 -10 172 0 0 1 0 ' 1 ~3/2
z=1 0 0 0 0 ‘ 2 17 < A

Since the solution is still non-integer, a third fractional cut is required. From the last row of above table,
we can construct the Gomorian constraint—- 1/2=-1/2 g, + &3
Inserting this additional constraint in the above table, the modified simplex table becomes :

Table 10-18
G- 2 20 -10 0 0 0 0
BASIC Cs Xp X; X, X3 X ! G Gy G
VAR. !

x2 20 0 1 0 o 1 0 0

x 2 3 1 0 0 o -4 1 0

x4 0 7 0 0 0 N 4 0
| omo |l 2 0 0 .l 0 .l oz 0]
g3 0> -172 0 0 0 0o ! 0o [-112 1|

z= 0 0 0 o 1 2 17 0 4
' v T d

Third Iteration. Using dual simplex method, remove G; and introduce G; .
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Table 10-19

G- 2 20 -10 0 0 0 0
BASIC Cs Xp X X, X, X | G G, Gy

VAR. |
x 20 0 0 1 0 o 0 0
x 2 2 1 0 0 o i -4 0 2
X 0 3 0 0 0 1o -6 0 8
X -10 2 0 0 1 o 1 0 -3
P 0 1 0 0 0 o [ 0 1 _2

=-16 0 0 0 R 0 4 |ea

Thus an optimum integer solution is obained as: x; =2 , x, =0, x; =2, max.z=~ 16

Example 4. The owner of a ready-made garments store two types of shirts known as Zee-shirts and
Button—down shirts. He makes a profit of Re. 1 and Rs. 4 per shirt on Zee-shirts and Button-down shirts
respectively. He has two Tailors (A and B) at his disposal to stitch the shirts. Tailor A and Tailor B can devote
at the most 7 hours and 15 hours per-day respectively. Both these shirts are to be stitched by both the tailors.
Tailor A and Tailor B spend two hours and five hours respectively in stitching Zee-shirt, and four hours and
three hours respectively in stitching a Button-down shirt. How many shirts of both the types should be stitched
in order to maximize daily profit ?

(a) Set-up and solve the linear programming problem.

(b) If the optimal solution is not integer-valued, use Gomory’s technique to derive the optimal integer
solution.

Formulation. Suppose the owner of ready-made garments decide to make x; Zee-shirts and x,
Button-down shirts. Then the availability of time to tailors has the following restrictions :
25 +4x,<7, 5x+3x,<15, and x ,X20.
The problem of the owner is to find the values of x; and x, to maximize the profit z = x; + 4x, .
Solution. Introducing the slack variables x3 > 0 , x4 2 0 in the constraints of the given problem, we have
an initial basic feasible solution : x; =7, x4 =15 .

Computing the net-evaluations A; and using simplex method an optimun solution is obtained as given in
the following table.

Table 10-20
) - 1 v 4 0 0
BASICVAR. Cp Xs X X, X3 X4
X2 4 - > 7/4 172 1 174 0
X4 . 0 39/4 1/2 0 -3/4 1
z=7 1 0 1 0 A

Thus a non-integer solution is obtained as : x; =0, =1, x, =394, z=7..

v To find the integer valued solution, add a fractional cut constraint in the optimum simplex table. Since the
fractional parts of Xp are [% , %] , select the row arbitrarily. So fg, =% . Then from the first row of the Table
10-20 , we have ‘

A+D=0+Px+(1+0) xp+ (0 +1) %, + (0 +0) x,

The corresponding fractional cut is therefore given by
3_ 1 1
—z=—5x1 +0x2—zx3 +0.X4+g|

Now inserting this additional constraint in the optimum simplex table, the modified table becomes.
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Table 1021
¢ 1 4 0 0 0
BASIC VAR. Cs Xp X1 X2 X3 XZ | G
X 4 12 12 1 1/4 o ! 0
|
xs 0 92 2. 0 ~3/4 1 10
____________________________________________________________________________ [T
g 0—> -3/4 0 ~1/4 i
2=1 1 0 1 o ! © A
T MR
First Iteration. Using dual simplex method, remove G, and insert X, .
Table 10-22
¢ 1 4 0 0 0
BASIC Cs Xs X X, X3 X, | G
VAR. P
x 4 1 0 1 0 0 l 1
X 9/2 0 0 -5 1 I 7
x 1 -3/ 1 0 12 o 1 -2
z=11/2 0 0 172 o i 2 A

Again, since the solution is non-integer one, insert another fractional cut in Table 10-22 . From the third

row of above table, we have (1 + %) =(1+0)x;+(0+0) x, +(0+

The corresponding fractional cut will be — % =0x; +0xz — % x3+0x5+0-g1+82-
Now inserting this additional constraint, the modified table becomes Table 10.23.

Hx+©0+0)xs+(-2+0) g

Table 10-23
T 1 4 0 0 0
BASIC VAR. Cs Xp b X2 X3 X | G G;
x2 4 1 0 1 0 o . 1 0
x4 0 9/2 0 0 -5/2 17 0
x 3/2 i 0 172 o | -2 0
-8 0 —--1/2 0 0 -1/2] o | 0 1
z=11/2 0 0 12 0o 0 “A
T ' d
Second Iteration. Using dual simplex method, remove G; and insert X; .
Table 10.24 ‘
¢j— 1 4 0 0 0 0
BASIC VAR. Cs Xp X X, X3 Xx, | G G,
X 4 1 0 i 0 0 I 1 0
X4 0 7 0 0 0 1 i 7 -5
xy 1 1 1 0 0 0 i i
x 0 1 0 0 1 0 ' -2
z=5 0 0 0 o | 14

This gives us an optimum integer solution:x; =1,x=1,and max z=5.
Thus the owner of ready-made garments should produce one Zee-shirt and also one Button-down shirt in
order to get the maximum profit of Rs. 5.



248 / OPERATIONS RESEARCH

Example 5. A manufacturer of baby-dolls makes two types of dolls : Doll X and Doll Y. Processing of
these two dolls is done on two machines A and B. Doll X requires two hours on machine A and six hours on
maciiine B. Doll Y requires five hours on machine A and also five hours on machine B. There are sixteen hours
of time per day available on machine A and thirty hours on machine B. The profit gained on both the dolls is
same, i.e., one rupee per doll. What should be daily production of each of the two dolls ?

(a) Setup and solve the linear programming problem.

(b) Ifthe optimal solution is not integer valued, use Gomory’s technique to derive the optimal solution.

Formulation of the problem. Suppose the manufacturer decides to produce x; dolls of type X and x, dolls
of type Y . Then availability of time on two machines has the following restrictions :

2x; +5x, <16, 6x;+5x,<30, and x;,x,20.

The - manufacturer wishes to determine the value of xjandx, so as to maximize the profit
z=Rs. (x +x3) .

Solution. Introduce the slack variables x; > 0 and x4 2 0 in the constraints of the given L.P. problem. An
initial basic feasible solution is x; = 16 and x, = 30 . Now using the simplex method, the optimum solution is
obtained as given in the following table :

Table 10-25
G- 1 1 0 0
BASICVAR. Cs Xp T X X, X X,
x; _ 1 -9/5 0 1 3/10 -1/10
Xy 1 7/2 1 0 ~1/4 1/4
2=53/10 0 0 1/20 3/20 A
This yields an optimum non-integer solution : x; = % y Xp = % and max z =33,

Since the fracticnal parts of X are % , %:Land max L% , %] = % , therefore from the first row of above table,
+

1+ =0+0)x; +(1 DB+ E1+2x,
The corresponding fractional cut is given by
: —§=OXI+OXZT%X3—]—90.X4+g].

Now inserting this additional constraint into the optimum simplex table, the modified table becomes,

Table 10:26
- 1 1 0 0 0
BASICVAR. Cp Xp X, X, X3 Xs | G
X2 1 95 0 1 3/10 S
| m S 72 300 B SO S 72 S 2 S S
2 0 -4/5 0 0 =310 [Zozm0] T Ta
2=53/10 0 0 1/20 3720 ¢ 0 A
i) ! d
First Iteration. Using dual simplex method, remove G, and introduce X, .
Table 10-27
cj— 1 1 0 0 0
BASIC VAR. CB Xp X3 X; X3 X4 ) ' G]
x2 1 17/9 0 1 173 0 -1
x 1 59/18 1 0 -1/3 0 518
x4 0 - 8/9 0 0 1/3 1 © - 10/9
z=31/6 0 0 0 0 ' 1/6 “A

Since solution is still non-integer, insert one more fractional cut in the above table. From the third row of
above table, we have

=0+ 1 +(0+0)x, + (0+§)x3+(1+0)x4+(—2+§)g1
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The corresponding fractional cut becomes : — -g— =0x; +0x; — % x3+0x5— -g g1+8
Inserting this additional constraint, the modified table becomes :

Table 10-28
¢ 1 1 0 0 0 0
li;\ASl:C Cp Xp Xy X, X3 X, E Gy G,
X 1 17/9 0 1 173 0 | -1/9 0
x 1 59/18 1 0 ~-1/3 o s/18 0
R S S 0 ... 89 1.0 O . 13 ... L Wt A SR
g2 0 -8/9 0 0 [=173] 0 F -89 1 ]
z=31/6 ) 0 0 0 ' 1/6 0 A
T : {
Second Iteration. Using dual simplex method, remove G, and insert X; .
Table 10-29
) - 1 1 0 0 0
BASC | Cs Xz X X; X3 X | G G
x 1 1 0 1 0 0 | -1 1
x1 1 25/6 1 0 0 o 1 6 -1
x 0 0 0 0 0 1 -2 1
x 0 - 8/3 0 0 1 0 : 83 -3
z2=31/6 0 0 0 0+ 1/6 0 A

This solution is also non-integer one, so insert one more fractional cut. The fractional parts of Xy are
[é , %] and max % , %] = -3% . Therefore, from the last row of the above table, we have ~
2+H=0+0)x+0+0) X+ (1 +0) x3+ 0 +0) x4+ (2 +2) g, +(-3+0) g,

The corresponding fractional cut will be

—%=0X1 +0x2+0x3+0x4—§gl +0g,+83.
Now inserting this constraint, the modified table becomes :
Table 10-30
;o 1 1 0 0 0 0 0
%A:éc Cs - Xg X X, X3 X4 TE G G2 Gs
X7 1 1 0 1 0 V] ; -1 1 0
x 1 25/6 1 0 0 o . 16 -1 0
x4 0 0 0 0 0 1o -2 1 0
_____ |0 83 | o0 0 1. 0 .83 -3 0|
g 0 -2/3 0 0 0 0 [=2/3] 0 1
2=31/6 0 0 0 0o ! 1/6 0 0 4
v [ {
Third Iteration. Using dual simplex method, remove G, and introduce G; .
Table 10-31
¢ 1 1 0 0 0 0 0
BASICVAR. [ Cp Xp X; X, X3 Xs | G G, Gs
x 1 2 0 1 0 0 | 0 1 -32
x 1 3 1 0 0 o ;0 -1 /4
x4 0 2 0 0 0 1 ; 0 1 -3
X3 0 0 0 0 1 o 0 -3 4
g 0 1 0 0 0 0o 1 0 -3 _
z=5 0 0 0 0 1 0 0 1/4 | 4
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This gives the optimum integer solution : x; =3, x, =2 and max z=5 .
Thus, the manufacturer should produce 3 dolls of type X, 2 dolls of type Y in order to get the maximum
profit of Rs. 5.

Note. Alternative solutions are : x; =5 ,x,=0;and x; =4, x2=1.

10.6. GEOMETRICAL INTERPRETATION OF GOMORY’S CUTTING PLANE METHOD

The geometrical interpretation of cutting plane method can be easily understood through a practical
example. '

Let us consider the problem of Example 5 : X,

Max. *
2=X) + X, 8.t 2x) +5x5 < 16, 6x1 + 5x5 < 30, x5, X2 2 0.

The graphical solution of this problem is obtained in Fig. 8
10-3 with solution space represented by the convex region
OABC. The optimum solution occurs at the extreme point
B, i.e.

Secondary constraint

x=35,x=18,max z=5.3.
But, this solution is not integer-valued. While solving this ™~
problem by Gomory’s method, we introduced the first

Gomory’s constraint : - '136 X3— 19—0 X3S — % ) 2 = 8(35 1-8)
In order to express this constraint in terms of x; and x; , we S
make use of the constraint equations : 2x; +5x; +x3=16 (o) 2 4 A\‘ 6 g
and 6x; +5x) +x4=30,
where x3 and x, are slack variables. From these, we get Fig. 10.3

x3=16 —2x; — 5x, and x4 =30—-6x; —5x;,
The Gomory’s constraint (i) then becomes
-2 (16 = 2x, - 5x) —1—90 (B0-6x;-5x)<-%, e xi+x <5t
This constraint cuts off the feasible region and now the feasible region is reduced to somewhat less than

the previous one as shown in Fig. 10-3 .
Similarly, the second Gomory’s constraint is g, 2 1. But,

3 9 4 . 3 9 4
—Sm- Xt =—% le g1=(grtir) =3
Substituting the values of x3 and x4 from the constraint equations of the given problem, we immediately
getg, = 31.8 — 6x; — 6x,. Therefore, 31-8—6x,—6x,21 (g1 21) or x +x <£5-103.
This constraint also cuts off some space of the feasible region. Since this constraint very minutely cuts off

the solution space, so it has not been plotted on the graph. Because of such cuttings, this method was named as
cutting plane method.

EXAMINATION PROBLEMS
Find the optimum integer solution of the following all integer programming problems :
1. Max. z= xy + X2 , subject to 2. Max z = x; — 2x; , subjectto
3xy-2x2 <5 4%, +2x, <15
x4 <2 x; ><=0, X3 20, and integers
x1 20, % 20, and are integers.
[Meerut M.Sc. (Math.) 94]
[Ans. x; =3, X =2, max Z="5]
3. Max z=3x», subjectto 4, Max z = xy + 5xp, subject to
3x1+2x, <7 X1+ 10 <20

X1—X2.>_—2 Xy £2
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X1, X2 2 0 and integers. X1, X2 2 0 and integers.
[Hint. Simplex method gives the integer solution.] [Ans.x; =2, %=1, max z=7]
[Ans. x; =0, X, =2, max z= 6]
5. Max z=2x; + 2x, subject to the constraints : 6. Max. z = 4x, + 3x;, subject to the constraints
S5x1+3x<8 Xy +2x254
x1+2x%<4 2X1+Xp<6
X1, X2 2 0 and are integers. Xy, X2 2 0 and are integers.
[Agra 99] [Agra 99]
[Ans.x;=1,x=1,and max z=4) [Ans.x; =3, % =0, max z= 12]
7. Max z=3x; + 4x, subject to the constraints : 8. Max. z= 11x; + 4x,, subject to the constraints :
3x;+2x,<8 -X1+2x<4
X1+4x 210 5x1+2x <16
X1, X2 2 0 and are integers. 2x1 - xp <4
[Ans. x; =0, x; =4, max. z= 16] X; 2 0, X 2 0 and are integers.
[Meerut M.Sc.93]
[Ans. x; =2, % =3, max z= 34)
9. Maxz=x; - X, subject to the constraints : 10.  Max. z=3x; ~ 2x; + 5x3, subject to the constraints.
X1 +2x< 4, Sx1+2x + 7x3<28
6x1+2x59; 4x1 +5x + 5x3 < 30
X1, X2 20, and are integers. X1, X2 < X3 2 0 and are integers.
[Meerut M.Sc. (Math) 92] : [Hint. Simplex method gives the integer solution}
[Ans. x;=1,x%=0;max. z=2] [Ans.x;=0,x%=0,x3=4, max. z=20

ll-Branch and Bound Method
| 10.7. THE BRANCH-AND-BOUND METHOD ]

This section deals with the algorithm given by Land and Doig for solving the all-integer and mixed-integer
problems. Why this method is given the name ‘branch-and-bound’ will be made clear in the following
sections. This is the most general technique for the solution of an LP.P. in which a few or all the variables are
constrained by their upper or lower bounds or by both. This technique is now discussed below.

The general idea of the method is to solve the problem first as a continuous linear programming problem and
then the original problem is partitioned (branched) into two sub-problems by imposing the integer conditions on
one of its integer variables that currently has a fractional optimal value. Let x; be an integer-constrained variable
whose optimum continuous value x;* is obtained in terms of a fraction. Then clearly we shall have,

v, [ ] <x; < [x*]+1.
Any feasible integer value, therefore, must satisfy one of the two conditions :
Xj < [.X:"*] or x] 2 [xj*] +1.

These two constraints are mutually exclusive and thus cannot be true simultaneously and hence both cannot be
introduced in the integer programming problem simultaneously. By introducing these constraints one by one in the
continuous linear programming problem, we shall have two sub-problems, both being integer-valued.

After branching in this manner, two sub-problems are constructed by inserting x; < [x;*] and x; > [x*]+ 1 one

by one to the original set of constraints.
To be definite, let the mixed I.P.P. be :

Max. z= 'ﬁl ¢;j x;, subject to the constraints : ..(10-6)
j= .
'i':l ax<b;, for i=1,2,....m (107)
where x;isinteger valued forj=1,2, ... ,k(Sn), ...(10-8)

and x;20 for j=1,2, wo b k+1, . ,n. ' ...(10:9)
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In addition to above, let us assume that for each integer-valued variable x; lower and upper bounds can be
assigned so that these bounds surely contain the optimal values
Lisx<U; for j=1,2,...,k. ...(10-10)

The following principal idea is behind the ‘branch-and-bound technique we are looking for :

Let us consider any variable x; and let / be some integer value such that L; S I< U;— 1. Then an optimum
solution to the problem (10-6) through (10-9) also satisfies
either the linear constraint x;21+1 .(10-11)
or the linear constraint x;<1I. ...(10-12)

To explain how this partitioning helps us, suppose we have overlooked the integer condition (10-8) and
obtained an optimal solution to the L.P.P. consisting of (10-6) , (10-7) , (10-8) and (10-9) indicating x; = 1% (for

example). Obviously, x; = 1% gives the range 1 <x; <2 . Therefore, in an integer-valued solution, we must have
eitherx; £1 or x 22.

Thus there will be no integer valued feasible
solution in the region x; =1 tox; =2 asshown _ i <1 _-l No integer value of x, |— x22
in the following figure. N _I L >
Now our problem is to search for the .
optimum value of z either in the first region ! Fig. 10.4 2

(x; £ 1) orin the second region (x; 2 2) .

Thus we formulate and solve the following two sub-problems separately :

Sub-problem (1) : consisting of (10-6), (10-7) , (10-8) and 2<x,fU,

Sub-problem (2) : consisting of (10-6), (10-7), (10-8), and L; < x; < 1.

If for any one of the sub-problems, optimum integer solution is obtained then that problem is not
partitioned further. Sometimes, it may also be possible that the sub-problem has no solution at all. Such
sub-problem is also discarded for ever. But, if any sub-problem involves some non-integer variable, then it is
again partitioned and this process of partitioning continues so long as it is applicable until each sub-problem
either possesses an integer-valued optimum solution or there is an indication that it cannot provide a better
solution. The optimum integer-valued solution among all the sub-problems is finally selected which gives
overall optimum value of the objective function.

We now discuss below the step-by-step procedure that specifies how the partitioning (10-11) and (10-12)
can be applied systematically to eventually get an optimum integer-valued solution.

Q. .Explain the Branch and Bound principie usedin |.P.

10.7-1 . Branch-and-Bound Algorithm

At the rth iteration we have available a lower bound (say, z,) for the optimal value of the objective function.
For convenience, we suppose that at the first iteration, z; is either strictly less than the optimal value, or equals
the value of the objective function for a feasible solution that we have noted. In case, if we have no information
about the problem we let 7y =—oc. In addition to a lower bound z; we also have a master list of linear
programming problems to be solved differing only in the revision of the bounds (10-10). At the first iteration,
the master list has only one problem consisting of (10-6), (10-7), (10-8) and (10-10) .

The step-by-step procedure at this rth (r =0, 1, 2, ...) iteration can be outlined as follows :
Step 1. Two possibilities may arise at the rth iteration :

(i) If the master list does not contain any linear programming problem (i.e., empty), stop the

computations.
(ii) Otherwise, go to step 2 for removing a linear programming problem from the master list.

Step. 2. Solve the chosen problem to obtain the optimum solution by using bounded variable technique.
Again, two possibilities may arise :
(i) Ifithas no feasible solution, orif the resulting optimal value of the objective function zis < z, , then let
z,, | = z,and return back tostep 1.

(ii) Otherwise, gotostep 3.



UNIT 2: INTEGER LINEAR PROGRAMMING / 253

Step3. (i) If the optimal solution to the linear programming problem thus obtained satisfies the integer
condition, then recordit, let z,, | be associated optimal value of the objective function, and return
back to step 1. ~

(ii) Otherwise, goto step 4.

Step 4. Select any variable x; , for J=1,2, ... k, that does not have an integer value in the obtained optimal
solution to the chosen linear programming problem. Let x;* denote this value, and [x;*] stand for
largest integer less than or equal to x* . Now, include two linear programming problems in the master
list. These two sub-problems aic :

Sub-prob 1. Same as the problem chosen in step 1, except that the lower bound L; on x; is replaced by

[Xj*] +1.

Sub-prob 2. Same as the problem chosen in step 1, except that the upper bound Uj on x;is replaced by [x] .
Letz,. =2z, , and return back to step 1. At the termination of the process if we find a integer-valued feasible
solution giving z, , it will be optimal, otherwise no integer-valued feasible solution exists.

Q.

1. Describe any one method of solving mixed integer programming problem.

2. Sketch the branch-and-bound method in integer programming. [Agra 99]
3. Whatis the main disadvantage of the branch and bound method ?

4. Explain with an example, how in some cases non-integer solution to a linear Programming problem is meanigless.

10-7-2. Computational Demonstration of Branch-and-Bound Method

The computational procedure of Branch-and-Bound al gorithm is now explained below by solving a numerical
example.
Example 6. Use Branch-and-Bound technique to solve the following integer programming problem :

Max.z=7x] +9X2 (])
subject to —-x+3x,<6
Tx; +x, <35 ..(2)
O0O<x;,x<7) ...(3)
.and x, , x, are integers. ..(4)

[Agra 98; Banasthali (MSc) 93; Bharthidasan B.Sc. (Math.) 90]

Solution. Step 1. At the initial iteration, we take ZP=0 as the lower bound for z, since the solution
Xy =x, =0 is feasible. The master list contains only the linear programming problem [(1), (2), (3)] which will be
named as Sub-prob. 1.

Step 2. Using graphical method, determine the optimal solution of Sub-prob. 1 as x1=9/2,x,=17/2,
z*=63 . Since the solution is not integer-valued, go to step 3, and choose x; . Since [x*]= [9/2]1=4 add the
following two sub-problems in the master list : :

Sub-prob.2:(1),(2)and5<x,<7,0 <Sx <7
Sub-prob. 3 : (1), (2) and 0 <x<54,0<x,<7.

Returning to first step with 22 = 7V = ¢ » we select the Sub-prob. 2. Now, step 2 determines that Sub-prob 2
has the feasible solution ,

X1=5,x=0,z%=35, (Solution of Sub-prob. 2.) ..(5)

Clearly, this solution satisfies the integer constraints. So we record it at this step, and take =35,

Again returning to step I with 2™ = 35 , we have Sub-Prob. 3.

Step. 2. Immediately gives the optimum feasible solution to Sub-prob. 3 as
x1=4,x=10/3, z* = 58 . [Solution to Sub-prob. 3]
Since this solution is not integer-valued, gotostep 3.
Step 3. Now consider x, . Since fx,*] = [3%] =3, we add the following sub-problems to the master list :
Sub-prob. 4. (1), (2)and 0 < X1£4,4<x,<7
Sub-prob.5.(1),(2)and0$x,S4,OSx2S3. .
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Returning to step I with ¥ = 7Y =35 we select the Sub-Prob. 4. In Step 2 we find that Sub-Prob. 4 has
no feasible solution. So we, again, return to Step 1 with z(s) W=35, Only Sub-Prob. 5 is now available
on the master list. Using step 2, we obtain the optimum solutnon to Sub-Prob. 5.

zx =55 ,x, =4, x,=3 . [Solution to Sub-prob. 5] ...[6]
Clearly, this solution satisfies the integer conditions. So we record it at step 3, and let 9=55.
Again returning to Step I, the master list becomes empty (i.e., contains no sub-problem) and thus the
process ends.

At the time of ending the process, we observe that only two feasible integer solutions (5 ) and (6 ) have
been noted. The ‘best one’ of these two feasible integer solutions gives us the required optimum solution

to the given integer programmmg problem.

Thus, finally, we get the optimum solution to the given LP.P. as zx =55 , x| =

The tree-diagram corresponding to this problem is shown in the following figure.
The entire calculations of this tree-diagram may be summarised as shown in the following table.

Tree-Diagram of Example 6

4,XZ=3.

Start
z* =63
n Node (1
(X|=4%,XZ=3%) ( )
X1 <4 X1 25
%
z =58 Node (3) Node (2) z =35
(xy=4,x,=3} ' (x1=5,x=0)
x<3 X, 24
? =55 Node (5) Node (4)
= = e e
(=4, x,=3) No Solution.
Optimal Solution
Fig. 10.5
Node Solution Additional Type of solution
X . Constraints
1 X2 2z
() 9/2 /2 63 — Non-integer
(Original problem)
@) 5 0 35 x25 Integer « 7+
3) 4 10/3 58 x1<4 Non-integer
4) x1S4,x24 No Solution
®
(5) 4 3 55 x1$4,x,<3 Integer ¢ 2
(optimal)
Example 7. Use Branch-and-Bound technique to solve the following problem.
Max. 7 =3x; + 3x, + 13x3, subjectto (1)
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= 3x+6x,+Tx;< 8
{ 6x; —3x,+7x;<8 ()
0<x;<5, -.(3)
and x;are integers, forj=1,2,3 . -.(4)

Solution. First we find the optimal solution by inspection.
Iteration 1 :
Step 1. Atthe initial iteration, let the lower bound of z be 7"’ = 0 , then x| =X = x3 =01is feasible. The master

list consists of only the L.P.P. (1), (2) and (3), which is designated as Sub-Problem I. Remove it in the
step 2.

Step2.  Find the optimal solution of Sub-prob. 1 as z* = 16 S X =Xy = 2§ ,x3=0.
Since the solution is not integer-valued, we proceed from step 2 to step 3, and choose x .
Step3. Since [x;*] = [2%] =2, add the following two problems in the master list :
Sub-prob2:(1),(2),and3<x,<5,0 Sx55,08x355.
Sub-prob 3:(1),(2)and0<x,<2,0 £x,£5,0<x,<55.
Iterations 2 and 3 :
Returning to step 1 with 2% =7z =0, we remove Sub-Prob 2. 1t can be verified that step 2 gives no
feasible solution to Sub-Prob 2. Hence, put = ?=0 ,and return to step 1.
In order to remove Sub-Prob. 3 we obtain its optimal soluton in step 2 as
X|=x=2,x3= % , 2k = 15% . (Sol. of Sub-prob. 3)
Clearly, this solution is not integer-valued. So, we proceed from step 2 to step 4.
Stepd4. Since [x3] = [%] = 0, and therefore include two sub-problems in the master list ;
Sub-prob. 4:(1),(2),and 1 $x52,0<x,<5,1<»<5.
Sub-prob. 5 : (1),(2),and0<x,<2,0 £x;£5,0<x<0.
Here we observe that Sub-Prob. 4 and Sub-Prob. 5 differ from Sub- Prob. 3 only in the bounds on x5 .
Iteration 4 :
Now returning to step I with z* = 0 , we remove Sub-Prob 4. The optimal solution is thus obtained as
N=x=1,x=1,2=15. (Sol. of Sub-prob. 4)
This leads to step 4 again; let us select x, , yielding, as a consequence, the following two sub-problems for

including in the mater list. .
Sub-prob.6:(1),(2)and0<x <2,1<x,<5,1 Sx3<5.

Sub-prob. 7. :(1),(2),and0<x; <2, 0<x<0,1<x3<5.
Itis obvious that Sub-prob. 6 and Sub-prob. 7 differ from Sub-prob. 4 only in the bounds on x, .
Iteration 5 :

Now returning to step I with 2> = 0 , we remove S, ub-prob. 6 and check that Sub-prob. 5 and S ub-prob. 7
still remain on the master list. We can find in step 2 that Sub-prob. 6 has no feasible solution.

Iteration 6 :
So we return to step 1 with 2® =0 . We now remove Sub-prob. 7 whose optimal solution is obtained as
X =x=0,x=1, =145 (Sol. of Sub-prob.7)
Since xj is fractional, we again repeat the step 4. Let us select x; . Here [x3%] = [1%] = 1. So we add two more

problems in the master list.
Sub-prob. 8 : (1), (2),and0< x; <2 ,0€x%,<0,2<x3<5
Sub-prob. 9:(1),(2),and0 < x; <2, 0<x<0,18x<1.
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Iterations 7, 8,9 :

It can be easily verified that removal of Sub-prob. 8 at iteration 7 provides an indication of no feasible
solution in step 2, and removal of Sub-prob. 9 at the 8th iteration yields in step 2: '
x,=x2=0,x3= 1 ,Z*=13.

Therefore, at step 3, we record this optimal solution andletz? =13,
Returning to step I again, we observe that only Sub-prob. 5 is now left on the master list whose optimal

solution s :

x0=2,%=2,%=0,2¢=13.
Since the value of objective function in the solution of Sub-prob. 9 and Sub-prob. 5 is the same and is equal to

2* = 13, we return to step I and stop the computations because the master listis now empty.
Thus, finally, we get the optimal solution to the integer programming problem as recorded at the 8th iteration :
x1=x=0,x3=1,2%=13.

Start
|

Istiteration. 2" =0

(Sol. of Sub-prob. 9)

(Sol. of Sub-prob. 5

Tree-Diagram of Example 7

X123

2nd iteration, =0

Solution is infeasible

X321

>
7

4th iteration, ¥ = 0

xp21

5th iteration, 2% = 0

Solution is in feasible

Stop
£'9=13

Prob. 1
x4 =X2=2%» x3=0, 7-* =16
| x <2
Prob. 2 Prob.3 ™34 iteration, 2% = 0
X =X=2, ;@=§, F=15
x3<0
Prob. 4 Prob. 5 9I)
oth iteration, 2% =0
, x1=2,x2=2%,)@=07;‘=13
x1=x2=§, X3=1,Z‘=15
x»<0
Prob. 6 Prob.7 y G)
6th iteration, 2% =0
x1=x=0, X3=1~?;
X322 x3s1
Prob. 8 Prob. 9

7th iteration, 27 =0

Solution is infeasible

Fig. 10.6

8th iteration, =0

X =X=0x3=1
" =13
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Remarks :
1. Inthe solution of above problem we have made arbitrary choices in the algorithm at two places :
(i) Selection of the problem to remove in Step 1.
(i) Selection of the variable x;to give us additional problem in Step 4. The number of iterations required to solve a
problem can vary considerably depending on how these selections are actually done. For example, choice of Prob. 4
instead of Prob. 5 at the 4th iteration tumed-out to be auspecious. Although, auxiliary numerical tests have been

developed to help us in making these choices, but these are not discussed in this text, because they are specially
useful to technical specialists.

2. The above algorithm can be demonstrated by means of a tree-like diagram as shown in Fig 8.5 and 8-6 . We have noted
that each node in the tree diagram represents a problem on the master list, sach branch is leading to one of the problems
added to the master list in Step 4. On account of this graphical analogy the word ‘branch’ is used in the name of the
algorithm ‘Branch-and-Bound'. The word ‘bound’ is suggested by the testin Step 2.

I 10.8. GEOMETRICAL INTERPRETATION OF BRANCH-AND-BOUND METHOD I

The geometrical interpretation of Branch-and-Bound method can be easily understood by the following
practical example.

Example 8. Explain the geometrical interpretation of Branch-and-Bound method by solving the
following LP.P. :

Max. z=x; + x,, subject to the constraints : 3x; + 2x; 12, x, £ 2, x; 2 0, x, > 0 and are integers.

Solution. Step 1. To solve the problem by graphical methuod without intehger conditions.

The graphical solution of Sub-problem 1 : Max. z = x; + x,, subject to

3x) + 26y = 12, x5 €2, x5, x 2 Ois shown by the convex region OABC in Fig. 10-7. The optimum solution
occurs at the extreme point B(x; = 8/3, x, = 2) with max. z = 14/3.

Step 2. Since the solution obtained above is not integer-valued, the given linear programming problem
isbranched into two sub-problems as follows :

The non-integer value of x; = 8/3 gives the range 2 < 8/3 < 3. Thus, two sub-problems are stated as
follows :

Sub-prob2:Max.z=x;+x,,8t. 3x;+2x<12,0<x,<2,0<x, <2

Sub-prob3 s Max z =x; + xp, S.t. 3 +2x,<12,0 Sx£2,x23.

The optimum solution of sub-problem 2 is : x; = 2, x, = 2 and max. z =4 as shown in Fig. 10-8. while the
optimum solution of sub-problem 3is : x; = 3, x, = 3/2 and max. z = 9/2 as shown in Fig. 10.9.

In sub-problem 2. all the variables have integer values. So there is no need of further sub-division. But,
sub-problem-3 having non-integer solution needs further sub-division.

Step 3. In sub-problem-3, the non-integer value of x, = 3/2 gives the range 1 < x, < 2. So we contruct two
more sub-problems by adding the constraints x, <1 and x, 2 2 one by one in sub-problem 3. Thus two
additional sub-problems are :

Sub-problem4 tMax.z=x1+x8.t. 3x +2x,<12,0 Sx<2,x23, 0€x,< 1.

Sub-problem 5: Max.z=x; +x; 8.t. 3x) +2x, 12,08 x, <2, % <3,0<x, 2 2.

In sub-problem - 4, the constraint x, <2 is redundant. The optimal solution to this sub-problem is
obtained as x; = 10/3, x; = 1, and max. z = 13/3 as shown in Fig. 10-10. This solution is not integer valued.

Here it is clear that any further branching of sub-problem 4 will not improve the value of the objective
function because the next sub-division will impose the restrictions x; <3 and x; 4. then the optimum
solutions are obtained as (x; = 3, x; = 1) and (x; =4, x, = 0) respectively. Both of these solutions give the
maximum value of zequal to 4.

Further, it may be moted that there exists no feasible solution to sub-problem 5.

Step 4. Finally, maximum value of the objective function z is obtained as 4 and the integer valued solution

is any of the following three :
1=2,x=2) or (x;=3,x=1) or (x;,=4,x,=0)
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EXAMINATION RROBLEMS

Use Branch-and-Bound technique to solve the following problems.

1. Maxz=3x;+3x% + 13x3 2. Max.z=7x; + 9x3 3. Max.z=3x+ X
subjectto subject to subject to
-3 +6x+7x3<8 -X1+3x<6 3y ~Xo+ X3 =12
5x1-3x+7x3<8 7X) + X2 535 31 +11x + X4 =66
0sx5<5 0<x, 227 x20,j=1,23,4
and all x;are integers. [IGNOU (MCA H1) 2000}

4. Max.z=xy+ X 5. Min. z=—5x; + 7x + 10X3 - 3x4 + X5 6. z=21x+11 %
subject to subject to the constraints subjectto
4x; - X< 10 X +3X% -5+ X+4x5<0 7X1+4x+ x3=13
2x1 +5x, <10 2% 46X - 33 +2x4 + 2x5 2 4 Xp<5, X1, X2, X320
X1,%=01,273. Xp—2X3~Xa+ X5 <~ 2 and integers

x=0,1,(3(=12,..,5). [Vidyasagar 97]

7. Min. z=-4x + 5x2 + X3 — 3% + X5 Subject to the constraints
-X +2X% —-Xg3 - x55—2,—4x1+5xz+xa—3x4+x55-2,—x,-3xz+2)(-;+6x4-25x551everyxiéo.1.

{ 10.9. APPLICATIONS OF INTEGER PROGRAMMING |

We present in this section a number of applications of integer programming (all-integer and mixed). Some of
these applications are connected with the direct formulation of the problem.

1. Travelling Salesman Problem. Let us asume that there are n towns with known distances between
any pair of cities. A salesman wants to start from his home town; visit each town once, and then return
to his starting point. The objective is to minimize the total travelling time (or cost or distance).

This problem can be formulated as zero-one integer programming problem. In a linear programming
problem, if all the variables are restricted to take the values of 0 or 1 only, then such linear
programming problem is called zero-one programming. The formulation of Travelling Salesman
Problem is as follows :
Minz=X X Z d; xj,i#j,
ijok
where d,-j denotes the distance from town i to town j, and i, j, k are integers varying from 1 ton

) 1, if the kth directed arc is from town i to town j .

0, if otherwise,

The constraints are of the following type :

(i) X x,'jk=], k=1, 2, ey 1

Lo

x,-jk =

i#j
This implies that only one directed arc may be assigned to a specific value of k.
(ii) Z‘,injk=l,i=l,2,..,n

ThlS 1mphes that only other town may be reached from a specifiec town i.
(iii) 2 Z xsubijk=1,j=1,2,.

This 1mp11cs that only one other town can initiate directed arc to a specified town .
(iv) E Xijx = Z Xir k+ 1), for all jand k.

i ¢ j r ae
This constraint w1lljensure that the round trip will consist of connected arcs. It is given that the kth
directed arc ends at some specific town j, the (k + 1)th directed are must start at the same town .

This problem has several practical applications. -

2. Fixed Charge Problelm. It is the problem where it is required to produce at least N units of a certain
product on n different machines.

Let x; be the number of units produced on machinej, j=1,2, ... n
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The production cost function for the jth machine is given by
kj + CiX;, X; >0,
O, xj =0 ’ )
where k; s the setup cost for machine j. Thus, the formulation of the problemis given by :
n n
Min.z = £ ¢(x),subjectto T x 2 N, x; 2 0and integer.
=1 j=1
Itis important ot note in the above formulation that the objective function is non-linear because of the
presence of the fixed-charge k;. This difficulty may be removed by using the mixed integer
programming as follows : \
Let M be a very large number exceeding the capacity of any of the machines and let y;=0or 1 forallj.
The above formulation thus reducesto :
n n
Min.z = X kiyi+Z ¢ xj,
j =1 ] =1

cj) =

n
subjectto X x; > N, x; < My; for all j, x; 20 and integer, ¥;j=0or 1 for all j
Jj=1 .
Thus, we can solve this problem by usual techniques discussed in this chapter.

Q. 1. State the computational process for solving a linear programming problem with upper bound conditions.
2. Discuss the importance of integer programming problem in optimization theory. Formate the travelling salesman
problem as an integer programming problem.
3. State the fixed charges problem. Show how to formulate this problem as a mixed integer programming problem.
4. Explain gomory’s method for solving an all integer linear programming problem. Formulate the travelling salesman
problem as an integer programming problem.

10.10. ZERO-ONE (0-1) PROGRAMMING

If all the variables in a linear programming problem are restricted to take the value zero or one only, then
such L.P.P. is known as zero-one programming problem. Various methods are available for solving the
zero-one programming problems.

The study of zero-one programming problems is specially important because of two reasons :

(1) A certain class of integer non-linear programming problems can be converted into equivalent zero-one
linear programming problems.

(1) A large variety of management and industrial problems can also be formulated as zero-one
programming problems.

_ The general integer programming methods such as Branch-and-Bound method can be used to solve a
zero-one L.P.P. simply by introducing the additional constraints that all the variables must be less than or equal
to one. The general integer programming methods were primarily developed for solving such type of
problems, they do not take advantage of the special features of zero-one L.P.P. Thus a number of methods have
been developed to solve zero-one linear programming problems more easily.

The theoretical development of these methods is beyond the scope of this book.

Q. 1. Whatis meant by zero-one programming problem ?
2. Write a short note on integer programming.

SELF-EXAMINATION PROBLEMS

1. Derive the expression for Gomory-cut in the case of mixed integer linear programming problem. Apply it to obtain initial
iterate to the following problem :
Min. z=~110x, — 80x, - 60x3 — 180X, subject to the constraints
Xi+X +X3 +X4+X% = 20
2x1+ 3Xp + 4x3 + 5X4 + Xg = 50 ¢
X1,%,Xx3=0,1,2... v Xa,X5,X%20.
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Following is the optimal iterate tableau of the corresponding linear programming problem of miximization.

cj = 110 80 60 180 0 0
Basic Var. CB XB x, Xz X3 X4 S, Sz
xq 110 50/3 1 2/3 1/3 0 5/3 -1/3
X4 180 1073 0 173 2/3 1 -2/3 173
= l 0 - l - Z 0 _ 1 _ 1 « A;
z= 24333 533 963 633 234 J

2. A company stocks an item that deteriorates with time as measured in weekly periods. The company has on hand four

such items. The present ages of these items are Ay , Az , A; and Ay . ithas contracted to sell the stock as follows : it must
deliver one item at each of weeks t; , f , t3 and t, from now : the revenue for an item is a function of its age at the time of
delivery.

Formulate this optimization problem as a programming problem.

{Your answer should specifically indicate the feasible range of each variable involved.)

. Suppose that three items are to be sequenced through n machines. Each item must be processed first on machine 1,
then on machine 2, ..., and finally on machine n . The sequence of jobs may be different for each machine. Let t;be the
time required to perform the work on item i by machine j ; assume each t;is an integer. The objective is to minimize the
total make-span to complete all items. Formulate the problem as an integer programming model.

3 Fogmulate the following Capital Budgeting problem as a zero-one integer programming problem given in the following data.
There are four projects under consideration. Assume that the project run info three years. Total available funds are Rs.
78,000 (to be used at the rate of Rs. 25,000/- each year). The expected profit and cost break-up is as follows :

Projects Expected Profit - Cost
Year 1 Year2 Year3
1 90,000 8,000 10,000 12,000
2. 60,000 2,000 5,000 8,000
3 1,80,000 15,000 10,000 5,000
4 -1,00,000 10,000 5,000 5,000

. Suppose five items are to be loaded on the vessel. The weight W, volume V and price p are tabulated below. The
maximum cargo weight and cargo volume are W= 112, V= 109 respectively. Determine the most valuable cargo load
in discrete unit of each item :

Item 1 2 3 4 5

w 5 8 3 2 7

|4 1 8 6 5 4
Price (Rs.) 4 7 6 S 4

Formulate the problem as integer programming model and then solve.

(a) Suppose that salesman has to travel n cities where he starts from his home city and visits each of other n— 1 cities
once and only once and returns home city. Let djbe the distance between city /and city /. Formulate the problem as
integer programming problem if he wishes to minimize the total distance travelied.

(b) Describle the cutting plane method to soive integer programming problem.

Following is the optimal table of an L.P.P.

Basic V. Xp Xi X2 S Ay A, S2
X 3/5 1 0 1/5 3/5 -1/5 0
X3 6/5 0 1 -3/5 -4/5 3/5
52 0 0 1 1 -1 1
2=12/5 0 1/5 M~§ M=1/5 0 Ay

Find the optimal solution to the problem when x; is required to take an integer value.
. Consider the following integer programming problem :
Maximize 9x; + 7xp,
Subjectto 3x; - x2 <6,
X1+ 7% <35
where x; , X2 2 0 and are integers.

{Roorkee M.Sc. | (OR) 96}

[IGNOU (MCA 1) 2000]
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OBJECTIVE QUESTIONS
In a mixed-integer programming problem
(a) all of the decision variables require integer solutions.  (b) few of the decision variables require integer solutions.
(c) different objective functions are mixed together. (d) none of the above.
The use of cutting plane method :
(a) reduces the number of constraints in the given problem.
(b} yields better value of objective function.
(c) require use of standard LP approach between each cutting plane application.
(d) all of the above.
The 0-1 integer programming problem
(a) requires the decision variables to have values between zero and one.
(b) requires that the constraints all have coefficients between zero and one.
(c) requires that the decision variables have coefficients between zero and one.
(d) all of the above.
The part of the feasible solution space eliminated by plotting a cut contains

(a) only non-integer solutions. (b) only integer solutions.

(c) both (a) and (b). " (d) none of the above.

While solving IP problem any non-integer variable in the solution is picked-up to

(a) obtain the cut constraint. (b) enter the solution.

(c) leave the solution. (d) none of the above.

Branch and Bound method divides the feasible solution space into smaller parts by

(a) branching. (b) bounding. (c) enumerating. (d) all of the above.

Rounding off solution values of decision variables in an LP problem may not be acceptable because

(a) it does not satisfy constraints.

(b) it violates non-negativity conditions.

(c) objective function value is less than the objective function value of LP.

(d) none of the above.

In the Branch and Bound approach to a max. problem, a node is terminated if

(a) anode has an infeasible solution.

(b) a node yields a solution that is feasible but not an integer.

(c) upper bound is less than the current sub-problem’s lower bound.

(d) all of the above.

Which of the following is the consequence of adding a new cut constraint to an optimal simplex table

(a) addition of a new variable to the table.

(b) makes the previous optimal solution infeasible.

(c) eliminates non-integer solution from the solution space.

(d) all of the above.

In a Branch and Bound minimization tree, the lower bounds on objective function value _
(a) do not decrease in value. (b)do notincrease invalue. (c)remain constant. (d) none of the above.

Answers
2.a) 3. 4@ 5@ 6@ T 8@ 9@ 10.0).

He e



TRANSPORTATION PROBLEMS
[ 11.1. INTRODUCTION |

As already defined and discussed earlier, the simplex procedure can be regarded as the most generalized
method for linear programming problems. However, there is very interesting class of ‘Allocation Methods’
which is applied to a lot of very practical problems generally called ‘Transportation Problems’. Whenever it is
possible to place the given linear programming problem in the transportation frame-work, it is far more simple
to solveitby ‘Transportation Technique’ than by ‘Simplex’. .

Let the nature of transportation problem be examined first. If there are more than one centres, called
‘origins’, from where the goods need to be shipped to more than one places called ‘destinations’ and the costs
of shipping from each of the origins to each of the destinations being different and known, the problem is to
ship the goods from various origins to different destinations in such a manner that the cost of shipping or
transportation is minimum.

Thus, we can formally define the transportation problem as follows :

Definition. The Transportation Problem is to transport various amounts of a single homogeneous
commodity, that are initially stored at various origins, to different destinations in such a way that the total
transportation cost is a minimum.

For example, a tyre manufacturing concern has m factories located in m different cities. The total supply
potential of manufactured product is absorbed by » retail dealers in n different cities of the country. Then,
transportation problem is to determine the transportation schedule that minimizes the total cost of transporting
tyres from various factory locations to various retail dealers.

The various features of linear programming can be observed in these problems. Here the availability as well as
the requirements of the various centres are finite and constitute the limited resources. It is also assumed that the cost
of shipping is linear (for example, the costs of shipping of two objects will be twice that of shipping a single object).
However, this condition is not often true in practical problems, but will have to be assumed so that the linear

programming technique may be applicable to such problems. These problems thus could also be solved by
‘Simplex’. Mathematically, the problem may be stated as given in the following section.

Q. Define transportation problem. [Bhubneshwar (IT) 2004]

[ 11.2. MATHEMATICAL FORMULATION |

Let there be m origins, ith origin possessing a; units of a certain product, whereas there are n destinations (n
may or may not be equal to m) with destination j requiring b; units. Costs of shipping of an item from each of m
- origins (sources) to each of the n destinations are known either directly or indirectly in terms of mileage,
shipping hours, etc. Let ¢;; be the cost of shipping one unit product from ith origin (source) to jth destination.,
and ‘x;;’ be the amount to be shipped from ith origin to jth destination.

Itis also assumed that total availabilities Za; satisfy the total requirements Zb;,i.e.,

Za;=%b; (i=1,2,...,m;j=1,2,..,n) ..(11-1)

(In case, Xa; # Tb; some manipulation is required to make Za; = Zb; , which will be shown later).

The problem now is to determine non-negative (2 0) values of ‘x;’ satisfying both, the availability
constraints :
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I xy=a;  fori=12,...m -(112)
J:

as well as the requirement constraints :
m

/2 %=

and minimizing the total cost of transportation (shipping)

forj=1,2,....n (11:3)

m n
= .21 '21 xjc;; (objective function). ..(11-4)
i=lj=1

It may be observed that the constraint equations (11-2) , (11-3) and the objective function (1 1-4) are all
linear in x;; , so it may be looked like a linear programming problem.

This special type of LPP will be called a Transportation Problem (T.P.).
Remark : By requiring strictinequalities a;> 0 and b; > 0 we are not restricting anything. Since alt x; 2 0, it follows that each 8,2 0

and each b; 2 0 . Moreover any ax = 0 = xi;= 0 and thus can be eliminated from the problem.

Q. 1. Explain Transportation problem and show that it can be considered as L.P.P.
2. Formulate transportation problemasalL.P.P.

3. Specify a transportation problem (TP). Is this anLPP ? [AIMS (MBA) 2002]
4. Explain the difference between a transportation problem and an assignment problem. Explain situations where an
assignment problem can arise. {Meerut (Maths) 99]
5. Show that assignment problem is the special case of the transportation problem. [IAS (Main) 88]

6. Give the mathematical formulation and difference between ‘Transportation’ and ‘Assignment’ problems.
[Agra 99; Kanpur 96; Meerut (IPM) 91; 90]
r11.3. MATRIX FORM OF TRANSPORTATION PROBLEM I

Consider the transportation problem as mathematically formulated above. The set of constraints
n m

.le,-j=a,- (i=12,..m) and_El xj=bj(j=1,2,...n) represent m+n equations in mn non-negative
Jj= i=

variables x;; . Each variable x;; appears in exactly two constraints, one associated with the ith origin O; and the
other with the jth destination D; . In the above ordering of constraints, first we write the origin-equations and
then destination-equations. Then the transportation problem can be restated in the matrix form as :
Minimize z = CX , X € R™, subject to the constraints AX=b ,X20,be R™*"
where X =[X11 , .. s X1n» K21 » oees X2n + s Xl » =+ » Xmn] » C s the cost vector, b = [a1,a2, ... s Gm, b1, by sy
..., by] and A is an (m + n) X mn real matrix containing the coefficients of constraints.
Itis worthnoting that the elements of A are either O or 1. Thus the general LPP can be reduced to transportation

problem if
(i) a;j’s are restricted to the values 0 and 1; and (ii) the units among the constraints are homogeneous.

For example, if m =2,n=3, the matrix A is given by

1 1 0 0O
000 11 1| |ed e
A=(1 0 O 1 0 0}=
010 010 I, I
10 0 1 0 01
And, therefore, for a general transportation problem, we may write
e 0@ o m
A = mn mn mn
L L L

where e,f,',), is an m x n matrix having a row of unit elements as its ith row and 0’s everywhere else, and I, is the
n X nidentity matrix.
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If a;; denotes the column vector of A associated with any variable x;j , then it can be easily verified that

ay=e€;+e€,,;,wheree;, e,,; € R™" "are unit vectors.

Q. 1. Show how a2 x 3 transportation problem may be transformed into a special network termed bipartite network.

2. f atransportation porblem has p factories and 2 retail shops, what is the number of variables and what is the number of
constraints ? [IGNOU 99, 96]

[ 11.4. FEASIBLE SOLUTION, BASIC FEASIBLE SOLUTION, AND OPTIMUM SOLUTION |

The terms feasible solution, basic feasible solution and optimum solution may be formally defined with
reference to the transportation problem (T.P.) as follows :
(i) Feasible Solution (FS). A set of non-negative individual allocations (x; > 0) which simultaneously
removes deficiencies is called a feasible solution. v
(ii) Basic Feasible Solution (BFS). A feasible solutionto a m-origin, n- destination problem is said to be
basic if the number of positive allocations are m+n —1 , i.e., one less than the sum of rows and
columns (see Theorem 11-2).
If the number of allocations in a basic feasible solution are less thanm +n — 1, it is called degenerate
BFS (otherwise, non-degenerate BFS).
(iii) Optimum Solution. A feasible solution (not necessarily basic) is said to be optimal if it minimizes
the total transportation cost.

Q. Define the terms (a) Feasible solution (b) Basic feasible solution (c) Optimum in solution.

11-4-1. Existence of Feasible Solution .

Theorem 11.1. (Existence of Feasible Solution). A necessary and sufficient condition Jor the existence of
Jeasible solution of a transportation problem is La;= Lb;(i=1,...,m;j=1,...,n). [Rewa (M.P.) 93]

Proof. The condition is necessory. Let there exist a feasible solution to the transportation problem. Then,

m n m n m n m n
Z Z x,~j=_Z a;, x Z X,’j': ij @20,': ij
i=1j=1 i=1 ' j=i=1 Y 5 i=1 ' j=1
The condition is sufficient. Let, %l a=, >'El b= k (say).

i= =

If A; # 0 be any real number such that x;; = A, bjfor all i and j , then A, is given by

n n n 12 a
j§1x5j=j=21 }»,b]=;»,‘]§lb]=kx, = l,~=;j§lx,-j=-’-:.
. b .
Thus,  xy=hiby="2L20,since a;> 0, b;>0 foralliand

Hence a feasible solution exists.

11-4-2. Basic Feasible Solution of Transportation Problem

It has been observed that a transportation problem is a special case of a linear programming problem. So a
basic feasible solution of a transportation problem has the same definition as earlier given for LP.P.(in Sec 3-8,
page 93). However, we observe that in the case of a T.P., there are only m+ n — 1 basic variables out of mn
unknowns. This happens due to redundancy in the constraints of the transportation problem. This can be
easily justified by proving the following theorem.
Theorem 11.2. The number of basic variables in a transportation problem are at the mostm +n - 1.
Proof. To prove this, consider the first m + n — 1 constraints of the transportation problem as

m
i§1 xj=b;, j=1,2,.,n-1 (n — 1 equations) (1)



UNIT 2: TRANSPORTATION PROBLEMS / 265

and j__)’_f]x,-j=a,- , i=1L2,.m. (meqdations) (2)
Now adding (n — 1) destination-constraints (1), we get
n-1 m. n-1
jEl i_Elx,-:jZ:lbj ) | .(3)
Also, adding m origin-constraints (2), we get
m n m
2 j;‘:lx,-j=’_;‘:1a,- ~@)
Then, subtracting (3) from (4), we get
m n n-1 m m n-1
R R B e kY ~0)
m n - -1
or iE (j=21x’7— Zx,])—Elbj _‘_‘_.‘.lbj(' %a,:?b})
m n-1 n-1 n-1 n=1
or iEl (X,-n +j§l x,-j —j=):1 xij)=bn+j§1bj —leb,
or ’ ; glxi,, = b, (which is exactly the last (nth) destination-constraint)

m n
This obviously indicates that if the first m + n — 1 constraints are satisfied then Zla,v = Elbj ensures that
= Jj=

the (m + n)th constraint will be automatically satisfied.

Thus, out of m + n equations, one (any) is redundant and remaining m + n — 1 equations form a linearly
independent set. Hence the theorem is proved. N

It is concluded that a basic feasible solution will censist of at most m + n — 1 positive variables, others
being zero. In the degenerate case, some of the basic variables will also be zero, i.e., the number of positive
variables will now become less than m + n — 1 . By fundamental theorem of linear programming, one of the
basic feasible solutions will be the optimal solution. ,

11.43. Existence of Optimal Solution

. Theorem 11.3. (Existence of an optimal selutiem). There always exists an optimal solution to a
balanced transportation problem.

n
Proof. Let gla,- = Zl b; , so that a feasible solution x;; exists. It, therefore, follows from the constraints of
1= Jj=

the problem that each x;; is bounded, viz., 0 < x;; S min (a; , by).
Thus the feasible region of the problem is closed, bownded and non-empty, and hence there exists an

optimal solution.
Note. in future discussion we shall assume that the above conditien heids for the transportation problem without mentioning it.

Q. 1. Prove that the transportation problem always possesses a feasibie soiution.
2. If all the sources are emptied and all the destinations are filled, show that a;= Zbjis a necessary and sufficient condition
for the existence of a feasible solution to the transportation preblem. {Dethi B.Sc. (Maths.) 90]

3. Prove that the solution of the transportation probiem is invariant under the addition (subtraction) of the same constant to
{from) any row or eelumn of the unit cost matrix of the proiem.

4. Derive a mathematical model for a cost-minimizing Transportation Problem’. Show that every transportation problem
has a feasible solution.
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[ 11.5. TABULAR REPRESENTATION |

Suppose there are mfactories and n warehouses. The transportation problem is usually represented in a tabular
form (Table 11-1). Calculations are made directly on the ‘transportation arrays’ which give the current trial
solution. :

Table 11-1
Warehouse — W, W, W; W, Factory
Factory | Capacities
F] C11 C12 Cij Cin a)
Fz €1 2 € s Con ay
F,' Cil Ci2 Cij Cin a;
Fp, Cml Cm2 Cmj Cmn Qpy -
Warehouse :
requirements by by b; by 2 G =j§21 b;
Table 112
Warehouse = w, W, W; W, ) Factory
Factory 4 Capacities
Fl Xi1 X12 X1 Xin a
Fy X1 X272 X2i . X2 a
F,‘ Xil X2 Xij s Xin a;
Fm Xm1 Xn Xmi X i Ay
Warehouse
requirements by b b; bn i?l a; = jg. b

In general, Tables 11-1 and 11-2 are combined by inserting each unit cost c; together with the corresponding
amount x; into the cell (i , j). The product x;; (c;) gives the net cost of shipping x;; units from factory F;to warehouse
W,

i+

Note. Whenever the amount x; and the corresponding unit cost ¢; are entered in the celi (i, /) , there may be a confusion to

distinguish between them. Therefore, in order to remove such confusion the quantities in parenthesis will denote the unit
costc;. .

Q. 1. Describe the transportation table.
2. Describe the matrix form of the transportation probiem. lllustrate with 2 origins and 3 destinations.

11.6. SPECIAL STRUCTURE OF TRANSPORTATION PROBLEM I

The transportation problem has a triangular basis, i.e. the system of equations is represented in terms of basic
variables only; non-basic variables are considered to be zero. The matrix of coefficients of the variables is
triangular. In other words, there is an equation in which only one basic variable occurs ; in a second equation
not more than two basic variables occur, in a third equation not more than three basic variables occur, and so
on. :

Equations (11-2) and (11-3) may be called the row and column equations, respectively.

Theorem 11.4. The transportation problem has a triangular basis.

Proof. To prove this theorem, consider equations (11-2) and (11-3) written row-wise and column-wise in
the tabular form Table 11-2).

There cannot be an equation in which no basic variable exists, otherwise the equation cannot be satisfied,
fora; # 0 or b; # 0 . The theorem will be proved by contradiction.
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Suppose every equation has at least two basic variables. Then there will be at least two basic variables in
each row, and the total number of basic variables will be at least 2m. Also each column equation will have at
least two basic variables, and hence in all there will be at least 2n variables. Let the total number of basic
variablesbe N . Thus, N 2 2m , N > 2n . Now, three cases may arise.

Casel. If m>n ,then N 22mbecomesN>m +n .
Case2. If m<n,thenN<2nbecomesN<n+m.
Case3. If m=n, then N 22mbecoems N=m +n.

Thus, it is observed that in every case N2 m + n . But N=m + n— 1, which is a contradiction. Thus, the
assumption of existing at least two basic variables in each row and each column is wrong. Therefore, at least
one such row or column equation exists having one basic variable only.

Let x,. be the only variable in the rth row and the cth column. Then, x,.=a, . Then equation can be
eliminated from the system by deleting the rth row equation and substituting x,, =a, in the cth column
equation. Thus, 7th row now stands cancelled, and b, is replaced by ', = b, — a, .

The resulting system now consists of m — 1 row equations and n column equations of which m + n — 2 are
linearly independent. Thus, there are m + n — 2 basic variables in this system. Repeat the process and it is
concluded that there is an equation in the reduced system which has only one basic variable. If this equation
happens to be the cth column equation in the original system, the cth column equation now contains two basic
variables. Thus the original system has an equation which has at most two basic variables. Continue this
process nd ultimately it can be shown that there is an equation which has at most three basic variables, and so
on.

s thetheorem is now completely proved.

Q. 1. Prove that there are only m+ n - 1 independent equations in a transportation problem, m and n being the number of
origins and destinations, and any one equation can be dropped as the redundant equation.

2. What do you mean by the triangular form of a system of linear equations ? When we can say that a system of linear
equations has a triangular basis. '

3. Show that all bases for transportation probiem are triangular.
4. What do you mean by non-degenerate basic feasible solution of a transportation problem.
5. State a transportation problem. When does it have a unique solution ? Explain.

I 11.7. LOOPS IN TRANSPORTATION TABLE AND THEIR PROPERTIES

Loop. Def. In a transportation table, an ordered set of four or more cells is said to form a LOOP if,

(i) anytwo adjacent cells in the ordered set lie either in the same row or in the same column ; and

(ii) any three or more adjacent cells in the ordered set do not lie in the same row or in the same column.

The first cell of the set is considered to follow the last one in the set. ,

If we join the cells of a loop by horizontal and vertical lineup segments, we get a closed path satisfying the
above conditions (i) and (ii). Let us denote the (i , j)th cell of the transportation table by (i , j) . Then it can be
observed from the diagramatic illustration in Fig. 11.1, that the set L={(l, 1), 4, 1), (4,4), (2, 4), (2, 3),
(1, 3)}-form a loop; and on the other hand, the set L' = {(3,2), (3, 5),(2,5),(2,4),(2,3), (1, 3), (1, 2)}
does not form a loop, because three cell entires (2, 3), (2, 4) and (2, 5) lie in the same row (second).

(‘»: ) " ("?32.-_-. (1 3)
¢y | 3,5)
(4, .1.5.... eseeccmmanaanndl -.-......------r-..-i“" 4)
(i) Loop L (ii) Non-loop L’

Fig. 11.1
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Theorem 11.5. Every loop has an even number of cells.

Proof. For any loop, we can always choose arbitrarily a starting point and a direction by an arrow mark
(—) . We consider a loop formed by n number of cells which are consecutively numbered from 1 to n. Now
assume that cell 1 and 2 exist in the same column. Thus the step from cell 1 to cell 2 involves a row change.
Obviously, step from cell 2 to cell 3 must involve a column change, from cell 3 to cell 4 a row change, and so
on; in general, the step to cell k involves a row change, if and only if, k is even. Since the step to cell 2 involved
arow change, the step from cell nto cell 1 must be a column change and the step fromcell n — 1 tocelln arow
change. Hence n will be even.

Set containing aloop. Def. A set X of cells of a transportation table is said to contain a loop ifthe cells of
X or of a subset of X can be sequenced (ordered) so as to form a loop. ‘

Theorem 11.6 (Linear Dependence and Loops). Let X be a set of column vectors of the coefficient
matrix of a T.P. . Then, a necessary and sufficient condition for vectors in X to be linearly dependent is that the
setof their corresponding cells in'the transportation table contains a loop.

Proof. Let us consider an m-origin, n-destination T.P. expressed in its matrix form :

Minimize z=CX ; C, X € R™, subject to the constraints : AX=b ,Xx20,be R" "
where b=(a; ,az, ... ,am, b1 b2, ..., by), Ais an (m +n) X mn real matrix containing the coefficients of
constraints and C is the cost vector.

To prove, the condition is sufficient :

Let us assume that the cells associated with the vectors of X contain a loop

L=(G,p,.G.0,0.0,...¢,0,0.))

If a; denotes the column vector of matrix A associated with the variable x;; [the cell (i, /)], then it follows
from the discussion in sec. 11-3 thata; =e; + e, ,;, where ¢; , €, ,; € R™*" are unit vectors. Thus X includes
the column vectors : ,

=€ty i, =€ty ks AR =€ ks A =€ T €y e s By =€t €y iy,
and api=€p+ep.j-

Hence by successive addition and subtraction, we get a;; — ag + ag ~ 2y + .. + 850 — 85 =0
(by Theorem 11.5, aloop contains an even number of cells)

Therefore, this particular subset of X, and hence X itself, is a linearly dependent set.

To prove, the condition is necessary :

Let us assume that X is a linearly dependent set. Then, there must exist scalars A;; not all zero such that

ZAja;=0, wherea; € X.

For simplification, remove all those vectors from X for whichA;; =0 .

Now we choose arbitrarily a vector from the remaining vectors in X. Let it be a;; = e; + €, ,j . We claim
that X must contain at least one more vector whose second subscript is j. Suppose to the contrary that it does
not, then since A;;# 0, the (m + j)th component of the vector equation ZA;; a; = 0 gives A;;.1=0 implying
A;; =0, acontradiction. So X contains at least one more vector with second subscript j.

Suppose that this vector is ay; = €, + €, ; . By similar reasoning, we conclude that there must be at least
one more vector in X with the first subscript k; say, ay = €; + €,,.; . By same argument once again, X must
contain at least one vector with the second subscript /. Letitbe, say,a;=€; + €y +;.

Thus we have determined four vectors in X, namely a;;, a;; , a, and a; whose corresponding cells, form a
loop. Thus the proof is complete.

If the last vector is a,; = e, + €,, .. ; instead of a;; , then as explained just before there must exist at least one
more vector with first subscript n. If it is a,; , aloop is complete, if not, letitbe a0 = €, + €5, .. o . X must contain
at least one more vector with second subscript 0. Now two cases will arise :

(1) The first subscript of newly discovered vector is one that has already been identified. In this case a

loop has been completed. ,

(2) The first subscript of the newly discovered vector is also new. In this case, since the number of vectors

in X is finite (by extending the above reasoning), we conclude that eventually a loop must be formed.
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Corollary. A feasible solution to a transportation problem is basic if, and only if, the corresponding cells
in the transportation table do not contain a loop.

Proof : Left as an exercise.

This corollary provides us a method to verify whether the current feasible solution to the transportation
problem is basic or not.

Q. 1. Afeasibie solution to a transporiation problem s basic, if and only if, the corresponding cells in the transportation table do
notcontain..................
2. With reference to a transportation problem define the following terms :
(i) Feasible solution (i) Basic feasible solution, (iii) Optimal solution, (iv) Non-degenerate basic feasible solution.
3. Define ‘lcop’ in a transportation table. What role do they play ? [Madurai B.Sc (Math.) 94)
4. In the classical transportation problem explain as to how many independent equations are there when there are

m-origins and n-destinations. What happens and how to handle the solution, when the initial assignment in the problem
gives less than this number of occupied cells ?

Initial Basic Feasible Solution

l 11.8. THE INITIAL BASIC FEASIBLE SOLUTION TO TRANSPORTATION PROBLEM —I

Methods of finding an optimal solution of the transportation problem will consist of two main steps :
(i) To find an initial basic feasible solution :
(i) To obtain an optimal solution by making successive improvements to initial basic feasible solution
until no further decrease in the transportation cost is possible.
There will be fewer improvements to make if initially we start with a better initial basic feasible solution.

So first we shall discuss below the methods for obtaining 1nitial basic feasible solution of a T.P.

Remark : Although the transportation problem can be solved using the regular simplex method, its special properties provide a
more convenient method for solving this type of problems. This method is based on the same theory of simplex method.
it makes use, however, of some shortcuts which provide a less burdensome computational scheme.

11-8-1 Methods for Initial Basic Feasible Solution

Some simple methods are described here to obtain the initial basic feasible solution of the transportation
problem. These methods can be easily explained by considering the following numerical example. However, the
relative efficiency of these methods is still unanswerable.

Example 1. Find the initial basic feasible solution of the following transportation problem.

Table 11.3
Warehouse — W) W, W Wy Factory
Factory Capacity
F 19 30 50 10 7
F 70 30 40 60 9
F3 40 8 70 20 18
Warehouse 5 8 7 14 34
Requirement
Solution.

First Method : North-West Corner Rule (Steping Stone Method). [Kanpur (B.Sc.) 2003; IAS (Main) 96 Type]

In this method, first construct an empty 3 X 4 matrix complete with row and column requirements (Table
11-4).

Table 114
W, W, W3 - Wy Available
F) 7
F, 9
Fs 18
Requirements— 5 8 -7 14

Insert a set of allocations in the cells in such a way that the total in each row and each column is the same as
shown against the respective rows and columns. Start with cell (1, 1) at the north-west corner (upper left-hand
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corner) and allocate as much as possible there. In other words, x;; = 5 , the maximum which can be alloocated
to this cell as the total requirement of this column is 5. This allocation (x;; = 5) leaves the surplus amount of 2
units forrow 1 (Factory F), so allocate x;; = 2 to cell (1, 2). Now, allocations for first row and first column are
complete, but there is a deficiency of 6 units in column 2. Therefore, allocate x,; = 6 in the cell (2, 2). Column
1 and column 2 requirements are satisfied, leaving a surplus amount of 3 units for row 2. So allocate xp3 =3 in
the cell (2, 3), and column 3 still requires 4 units. Therefore, continuing in this way, from left to right and top to
bottom, eventually complete all requirements by an allocation x34 = 14 in the south-east corner. Table 11-5
shows the resulting feasible solution.

Table 11.5
5(19) 2 (30) 7
6 (30) 3(40) -
4(70) 14 (20) 18
5 8 7 14

On multiplying each individual allocation by its corresponding unit cost in ’( )’ and adding, the total cost
becomes=5 (19) + 2 (30) + 6 (30) + 3 (40) +4 (70) + 14 (20)=Rs. 1015 .

Q. Explain the application of North-West Corner Rule with an example.

Second Method : The Row Minima Method.
Step 1. The transportation table of the given problem has 12 cells. Following the row minima method, since
min (19, 30, 50, 10) = 10, the first allocation is made in the cell (1, 4), the amount of the allocation is
given by x4 = min (7, 14) =7 . This exhausts the availability from factory F; and thus we cross-out

the first row from the transportation table (Table 11.6).
Table 116 Table 11-7

W, : W, W, w, - W,

00 70 - U000 -
8

& a0 |3o) @0y |(60) ’ & (70) {6{% 40) | (60) ’

@) 6o |9 jeo | '8 Bleo A |en |

5 8. 7 7 5 8 7 7
Step2. In the resulting transportation table (Table 11-7), since min (70, 30, 40, 60) =30, the second
allocation is made in the cell (2, 2), the amount of allocation being x,, = min (9, 8) = 8 . This satisfies
the requirement of warehouse W, and thus we cross-out the second column from the transportation
table obtaining new Table 11-8 .
Step 3. In Table 11-8 , since min (70, 40, 60) = 40 ,the third allocation is made in the cell (2, 3), the amount
being x,3 = min [1, 7] = 1 . This exhausts the availability from factory F, ,
Table 118 Table 119
w, w, W, w, W,

N -

7 A30) ,(40) (60) 107430 040)7%(60) /
7 7 4
Fy 7 18 Fy / // 18
(40) a0 |eo | (40) IR

S X 6 7 5 X 6 7
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and thus we cross-out the secand row from the table 11.8 getting the Table 11-9,

Step 4. The next allocation is made in the cell (3,4), since min (40, 70, 20) =20, the amount of allocation
being x34 =min (7, 18) = 7 . This exhausts the requirement of warehouse W, and thus we cross-out
the fourth column from the Table 11-9 .

Step 5. The next allocation is made in the cell (3, 1), since min (40, 70) = 40, the amount of allocation being
X3 =min (5, 11) =5 . This satisfies the requirement of warehouse W; and so we cross-out the first
column W to get new Table 11.11.

Table 11-10 . Table 11-11

e

/ .
. o
"’ @%/%%/ (70) ) ’ %////{(%

2

o

\

x F,

nnel.

7
%
5 6 X X X

Step 6. The last allocation of amount x33 = 6 is obviously made in the cell (3, 3). This exhausts the availability
from factory F3 and requirement of warehouse W simultaneously. So we cross-out third row and
third column to get the final solution Table 11-12 .

Since the basic cells indicated by (*) do not form a loop, an initial basic feasible solution has been
obtained. The solution is displayed in Table 11-12 .

Table 11-12
Wy W, Ws LA
7 X
F; .
8 1 x
F, ° .
5 6 7 X
Fs hd ° .
) X X X X

The transportation cost is given by
z=Tx10+8x30+1x40+5%x40+6x 70+ 7 x 20
=Rs. 1110.

Third Method : The Column Minima Method.

This method is similar to row-minima method except that we apply the concept of minimum cost on
columns instead of rows. So, the reader can easily solve the above problem by column minima method also.

Fourth Method : Lowest Cost Entry Method (Matrix Minima Method).

The initial basic feasible solution obtained by this method usually gives a lower beginning cost. In this
method, first write the cost and requirements matrix (Table 11-13).

Start with the lowest cost entry (8) in the cell (3, 2) and allocate as much as possible, i.e., x3, = 8 . The next
lowest cost (10) lies in the cell (1, 4), so allocate x;4 =7 . The next lowest cost (19) lies in the cell (1, 1), so
make no allocation, because the amount available from factory F, was already used in the cell (1, 4). Next
lowest cost entry is (20) in the cell (3, 4) where at the most it is possible to allocate x34 = 7 in order to complete
the requirements of 7 units in column 4.

Further, next lowest cost is (30) in cells (2, 2) and (1, 2) so no allocation is possible, because the

requirement of column 2 has already been exhausted. This way, required feasible solution is obtained
(Table 11-13). .
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Table

1113
This feasible solution results in lower transportation Available
cost, i.e., o(i9) | o(30) | #(50) | 7(10) 7
2(70) + 3(40) + 8(8) + 8(40) + 7(10) + 7(20) = Rs. 814.
This cost is less by Rs. 201, i.e., Rs. (1015-814) as 270) | «(30) | 7(40) | «(60) 9
compared to the cost obtained by north-west
corner rule. - 340) | 8®) | «(70) | 720) | I3
Requirements 5 8 7 14
Q. Explain the application of Matrix-Minimum rrethod with an example.
Fifth Method. Vogel’s Approximation Method (Unit Cost Penalty Method). [Banasthali (M.Sc.) 93]
Table 11-14
Step 1. In lowest cost entry method, it is not W, W, L W, Available
possible to make an allocation to the cell (1, 1) F " 5 pon 0 ;
which has the second lowest cost in the matrix. It L 19 | GO | 60 | (0
is trivial that allocation should be made in at least 13 (70) (30) (40 (60) 9
one cell of each row and each column. Fs (40) ®) (10) o) | 18
Requirement 5 8 7 14

Step 2. Next enter the difference between the lowest and second lowest cost entries in each column beneath the
corresponding column, and put the defference between the lowest and second lowest cost entries of each row to the
right of that row. Such individual differences can be thought of a penalty for making allocations in second lowest
cost entries instead of lowest cost entries in each row or column. For example, allocate one unit in the second lowest
costcell (3, 1) instead of cell (1, 1) with lowest unit cost (19). There will be aloss (penalty) of Rs 21 per unit. In case,
the lowest and second lowest costs in a row/ column are equal, the penalty will be taken zero.

F
F
Fy
Requirements :

Penalties :

Table 11.15
W, W, Ws W4  Available
*(19) *(30) *(50) *(10) 7
*(70) *(30) *(40) *(60) 9
*(40) 8(8) *(70) *(20) 18/10
5 8/0 7 14
@n (21_2) (10) (10)

Penalties
)
10
(12)

Step 3. Select the row or column for which the penalty is the largest, i.e., (22) (Table 11-15), and allocate the
maximum possible amount to the cell (3, 2) with the lowest cost (8) in the particular column (row) making
x35 = 8 . If there are more than one largest penalty rows (columns), select one of them arbitrarily.

Step 4. Cross-out that column (row) in which the
requirement has been satisfied. In this example,
sccond column has been crossed-out. Then find the
corresponding penalties correcting the amount
available from factory F3. Construct the first

reduced penalty matrix Table 11-16.

F

P

F3
Requirements

Penalties

Table 11.16
w, A W,
5(19) | *(50) | *(10)
*(70) *(40) | *(60)
*(40) *(T70) | *20)
5/0 7 14
10) (10)

@n
T

Available
7
9

10 (Note)

Penaities
)
(20
(20



